
Utility/helper thread API

Masamichi Takagi, Balazs Gerofi (RIKEN)
Rolf Riesen (Intel)

Kevin Pedretti (SNL)

r18

1

Revision history

2

Revision Date Description

r01 2016/07/26 RIKEN internal version

r02 2016/07/29 Merged Rolf’s email summary

r03 2016/08/09 Merged Aug 3rd discussion

r04 2016/10/03 Added draft API

r05 2016/10/19 Merged Oct 8 discussion

r06 2016/10/30 Merged Oct 30 discussion with ANL

r07 2016/11/14 Merged Nov 14 discussion with Michel, Kevin, Rolf, Balazs, Masamichi

r08 2016/12/07 Turned Motivation slide into Introduction and expanded; some edits for clarity on
slides 6 - 7, 11 – 12, 16 – 17, 20, and 30. Also added some questions and notes as side-
panel comments.

r08b 2016/12/07 Meeting: Masamichi, Balazs, and Rolf. Clarified attributes on slides 8 and 9. Expanded
the description of some macros; needs more work. NUMA node -> domain. Some
more clean up of the macro slides.

Revision history (continued)

3

Revision Date Description

r09 2016/12/12 Meeting: Rolf, Kevin, Balazs, and Masamichi. The function where a thread indicates

itself is a utility thread (uti_pthread_indicate()) is moved to the "Future Work" part.

The macros to specify a reference point in location (base_* macros) are moved to the

"Considered but Dropped Ideas" part. Added more people to the acknowledgement

slide. Added a con in slide 9. Upstreaming a new clone() is elaborated and moved to

the "Future Work" part. Clarification in slide 5, 8, 10, 11, 13, 24, 30 and 32.

r10 2016/12/21 Meeting: Takayuki Okamoto (Fujitsu), Kouichi Hirai (Fujitsu), Atsushi Hori (RIKEN)

Balazs and Masamichi. Add descriptions answering Fujitsu's question (slide 10, 18).

[Proposal] Eliminate redundant Boolean arguments for location attribute macros

(slides 20-23). Update design for McKernel (slides 30-32). Add discussion on providing

ways to let runtime developer know the OS decision on location (slide 44). Add

description on behavior when pthread_setaffinity_np() is used with location hints

(slide 25). Add Fujitsu people to the acknowledgement slide (slide 4).

r11 2017/1/31 Add a way to switch libuti.so for Linux and McKernel (slide 39)

r12 2017/2/3 Meeting: Bob, Rolf, Dave, Tom, Yuaka, Balazs, Masamichi. Add executive summary

(slide 4). Replace UTI_ATTR_CPU_SET with UTI_CPU_SET (slide 18, 30). Add

implementation notes on switching library binaries between two OSes (slide 31-33).

Revision history (continued)

4

Revision Date Description

r13 2017/2/13 Merged Kevin's comment: Add configuration of Kitten (Slide 15,16). Correct typo (Slide

50).

r14 2017/5/1 Merged discussion on Apr 11: UTI_CPU_SET is only for Linux and Linux CPU ids are

used.

r15 2017/6/16 Merged discussion on May 18: Repurpose UTI_CPU_SET to specify CPUs for utility

thread. Add hints to prefer LWK core.

r16 2017/6/30 Merged two ideas of (1) reporting back to the caller if the hints are honored or not

and (2) placing an utility thread on a CPU to which a fabric-related IRQ is routed, both

of which are lead by John Attinella

r17 2017/7/12 Removed const in front of uti_attr in uti_pthread_creat()

r18 2019/2/22 Add environmental variable to specify CPUs for each process, including both utility

CPUs and compute CPUs, to make it possible to spawn utility threads on compute

CPUs, to describe locality and to provide load-balancing (draft)

Executive Summary

Background and purpose
• Various libraries and runtimes spawn utility/helper threads, leading to resource oversubscription which

can hurt HPC application performance.

• The main problem is that the kernel cannot know whether a new thread is a utility thread or a
computational thread.

• By providing an interface to let runtime systems give hints to the kernel when utility threads are being
created the system can optimize their placement on the available resources.

Collaborators (OS developers)
• Intel, RIKEN, Sandia National Lab., Fujitsu

Target app/runtime/libraries
• Contacted, showed interest

• MPICH, Open MPI, Intel OpenMP
• Potential users

• IB drivers, High Performance ParalleX (HPX)

5

Introduction

• Various libraries and runtimes spawn asynchronous utility/helper threads

• Example: asynchronous progress thread of MPICH, DAPL, monitor thread of Intel OpenMP, IB connection

thread of Open MPI

• Especially for lightweight kernels with cooperative, non-preemptive schedulers these utility

threads pose a big problem

• Thread oversubscription hurts performance

• On Linux it can lead to extra context switches, it may imply frequent thread migrations and interference

with application threads

• On LWKs this issue becomes even worse, because:

• LWKs usually run one thread per HW thread

• Usually provide no timesharing

• Co-operative scheduling may help, but needs explicit yielding from userland

6

Introduction (cont.)

• The main problem is that the kernel cannot know whether a new thread is a utility thread

or a computational thread

• Different utility threads have different requirements; e.g.

• May need to run in same NUMA domain, poll frequently, can share a core with other utility threads, etc.

• If a utility thread can be identified and its requirements are known, the kernel can place

them on an appropriate CPU

• The special threads could be multiplexed over a set of dedicated physical resources

• In multi-kernel OSes, helper threads could be placed on Linux cores

7

Desired solution

Part of the solution are two separate concerns/components:

1. Applications/runtimes/libraries should be able to indicate that a thread is not a
computation thread
• The API should be expressive enough to describe the thread’s particular attributes:

• Some of these utility threads may need an entire logical CPU to themselves; maybe because they employ
an MWAIT instruction or are polling so frequently that they consume the entire resource

• Others are sleeping in poll()/select()/futex() calls most of the time

• The API should be standardized among LWKs and Linux
• Preferably with minimal changes to existing code

2. The ability to denote a set of resources (e.g., identify CPU cores or kernels) where
utility threads should be scheduled
• Some resources are reserved for system services in multi-kernel OS. When and how the

reservation is performed is OS dependent, e.g. done at boot time by OS loader or done at job-
launch time by node resource manager.

8

Timing
1. Parent marks utility thread during creation
2. Parent indicates that the child is a utility thread after creating it
3. Child itself indicates that it is a utility thread when it starts running

Abstraction level
A. clone() level
B. pthread_create() level

API alternatives

9
→ Support 1-B

Discussion on timing alternatives

Method Pros Cons
1. Parent indicates when

spawning/creating the
utility thread

• Eliminate additional system calls for migration
• Eliminate interference with compute-threads, e.g.
disturbing CPU binding of compute-threads

• Need to modify both clone() and
pthread_create() functions when
supporting both of the abstraction
levels

2. Parent indicates after
spawning utility thread

• Less intrusive for application code, i.e. one
additional function call

• One function could support both of the
abstraction levels

• Caller should pass tid to specify the
child thread but there is no clean way
because pthread_t is an opaque type

• Costly, hard-to-implement migration
across partition boundary is needed in
partitioned multi-kernel OS (e.g.
McKernel)

3. Child indicates after it
has been spawned

• Same as above • Costly, hard-to-implement migration
across partition boundary is needed in
partitioned multi-kernel OS (e.g.
McKernel)

10

• Hints on resource allocation and scheduling

• OS would place a new utility thread on one of the Linux CPUs or the CPUs dedicated for system services even when
not passing any hints.

• Any hints can be ignored by the implementation

• Attributes are implemented as an opaque type and users manipulate it by a set of macros

Location Attributes

11

Name Type Description

1 cpu_set
Set of integers Specify the set of CPUs used for utility threads. The format is comma-separated list of Linux

CPU ids and id-ranges, as in cpulist_parse().
Example: 0-2, 4, 6 ==> {0, 1, 2, 4, 6}

2 numa_domain_set
Set of integers Request to place the thread on one of the NUMA domains in this set. The set contains

NUMA domain numbers. It is assumed that NUMA domains are numbered by the same
method the underlying OS uses.

3 same_numa_domain bool Request to place the thread in the same NUMA domain as the caller is in.

4 different_numa_domain bool Request to place the thread in a different NUMA domain than the caller is in.

5 same_{L1,L2,L3} bool Request to place the thread on the CPU sharing L1/L2/L3 cache with the caller.

6 different_{L1,L2,L3} bool Request to place the thread on a CPU not sharing L1/L2/L3 cache with the caller.

7 prefer_{COMP,SYS} bool Request to place the thread on a compute/system service CPU.

8 fabric_intr_affinity
bool Request to place the thread on a CPU to which a fabric (interconnect) related IRQ is routed

to

Behavior Attributes

12

Name Type Description

7 needs_exclusive_CPU
bool This utility thread needs to be the sole runnable thread on a hardware thread. Perhaps because it calls a

thread-blocking MWAIT.

8 CPU_intensive
bool This utility thread uses a lot of CPU cycles and is sensitive to disruptions. Perhaps because it is polling

frequently.

9 high_priority
bool Use high priority scheduling for this utility thread. It can run alongside others, but needs to be given

higher priority.

10 non_cooperative
bool This utility thread will not yield the CPU very frequently. For other tasks to run, the scheduler needs to

preempt this utility thread.

Draft API for apps/runtime/libraries

13

Goals

1. Enable applications/runtimes/libraries to indicate that a thread is not a computation
thread

2. Enable applications/runtimes/libraries to denote the location (e.g. which core or kernel)
where utility threads should be placed or the behavior that lets the kernel know what it
can and should do with it

Usage

1. (Linux only) Specify system service CPUs
2. (Partitioned OS only) Specify CPUs for each process
3. Prepare an attribute describing the location and

behavior of the utility thread
4. Create the pthread-compatible thread by passing

the attribute
5. (Optional) Check if the attributes are honored or not

McKernel
Linux

Utility thread

CPU CPUCPU CPU… …

HPC Application

CPUs for utility threads

McKernel

Linux

Utility thread

CPU CPUCPU CPU… …

HPC Application

CPUs for utility threads

Regular Linux

Utility thread

CPU CPUCPU CPU… …

HPC Application

mOS

mOSLinux

CPUs for utility threads

Kitten

Linux

Utility thread

PU PUPU… …

HPC Application

Kitten PUs reserved
for Utility Threads

Kitten (Hobbes Multi-Kernel)

PU
PU PUPU PU

Core … …Core Core Core

Kitten PUs reserved
for HPC Application

Vertical Partitioning of
Logical Cores (PUs)

between Linux and Kitten;
Utility Threads

Run on Kitten PUs

Discussion needed

Software Components and Interface

Linux

Node resource
manager (part of
batch-job system)

Utility thread interface

Utility thread lib
for node resource mgr

Utility thread lib
for McKernel

mOS

Utility thread lib
for mOS

Code for utility
thread

MPI / OpenMP runtime MPI / OpenMP runtime MPI / OpenMP runtime

Extended system calls

System calls for
utility threads

McKernel

Code for utility
thread

Code for utility
thread

Extended Linux interface

Linux interface

Utility thread interface Utility thread interface

Linux McKernel mOS

The functions of Utility Thread Interface (UTI) are provided to apps/runtimes/libraries in the form of
user-level library

Kitten

Utility thread lib
for Kitten

MPI / OpenMP runtime
Code for utility

thread

Utility thread interface

Kitten

System calls for
utility threads

Extended system calls

uti_attr_init Function

17

Synopsis
int uti_attr_init(uti_attr_t *uti_attr)

Description
Initialize the object of utility thread attributes pointed to by uti_attr. All of the attributes are
set to invalid.

Return value
0 Success
EINVAL uti_attr is invalid

uti_attr_destroy Function

18

Synopsis
int uti_attr_destroy(uti_attr_t *uti_attr)

Description
Destroy the object of utility thread attributes pointed to by uti_attr. Destroying an object of
utility thread attributes has no effect on threads that were created using the object.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_NODE_SYS_CPUS Environmental Variable

19

Variable Name
UTI_NODE_SYS_CPUS

Description
This variable denotes the system service CPUs available to utility threads for a node. The format
is comma-separated list of Linux CPU ids and id-ranges, as in cpulist_parse(), e.g. 1-3,5 means {1,
2, 3, 5}.
OS with partitioning (e.g. mOS, McKernel) sets this variable automatically.
Example:
• CPU #0-3 belong to numa-node #0, CPU #4-7 to numa-node #1
• CPU #1-3 and #5-7 are used for McKernel
• UTI_CPU_SET should be "0, 4"

Discussion needed

UTI_PROC_UTIL_CPUS Environmental Variable

20

Variable Name
UTI_PROC_UTIL_CPUS

Description
This variable denotes the CPUs available to utility threads for a process. It can include the
compute CPUs as well as the system service CPUs. The format is the same as
UTI_NODE_SYS_CPUS. A CPU for a utility thread is chosen from the set in a load-balanced way.
Linux sets this variable automatically to the CPU affinity. McKernel sets this variable to the CPU
affinity plus IKC routing target CPUs.

Example:
• CPU #0-3 belong to numa-node #0, CPU #4-7 to numa-node #1
• CPU #1-3 and #5-7 are used for McKernel
• CPU affinity of process #0 is set to #1-3 and process #1 to #5-7
• UTI_PROC_UTIL_CPUS of process #0 should be "0-3", #1 should be "4-7"

Discussion needed

UTI_ATTR_NUMA_SET Macro

21

Synopsis
int UTI_ATTR_NUMA_SET(uti_attr_t *uti_attr, unsigned long *nodemask, unsigned long
maxnode)

Description
Set numa_set attribute of uti_attr to the set specified by nodemask and maxnode and make the
attribute valid. nodemask points to a bit vector whose length is maxnode. A utility thread
created with this attribute is meant to run within the indicated NUMA domain.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_SAME_NUMA_DOMAIN Macro

22

Synopsis
int UTI_ATTR_SAME_NUMA_DOMAIN(uti_attr_t *uti_attr)

Description
Set same_numa_domain attribute of uti_attr to true and make the attribute valid.
This macro is used to indicate that the utility thread should run in the same NUMA domain as
the caller is in.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_DIFFERENT_NUMA_DOMAIN Macro

23

Synopsis
int UTI_ATTR_DIFFERENT_NUMA_DOMAIN(uti_attr_t *uti_attr)

Description
Set different_numa_domain attribute of uti_attr to true and make the attribute valid. This macro
is used to indicate that the utility thread should not run in the same NUMA as the caller is in.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_SAME_{L1,L2,L3} Macro

24

Synopsis
int UTI_ATTR_SAME_{L1,L2,L3}(uti_attr_t *uti_attr)

Description
Set same_{l1,l2,l3} attribute of uti_attr to true and make the attribute valid. This macro is used
to indicate that the utility thread should run in the same vicinity as the caller is in.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_DIFFERENT_{L1,L2,L3} Macro

25

Synopsis
int UTI_ATTR_DIFFERENT_{L1,L2,L3}(uti_attr_t *uti_attr)

Description
Set different_{l1,l2,l3} attribute of uti_attr to true and make the attribute valid. This macro is
used to indicate that the utility thread should not run in the same vicinity as the caller is in.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_PREFER_{LWK,FWK} Macro

26

Synopsis
int UTI_ATTR_FABRIC_INTR_AFFINITY(uti_attr_t *uti_attr)

Description
Set prefer_{lwk,fwk} attribute of uti_attr to true and make the attribute valid. This macro is used
to indicate that the utility thread should be placed on a LWK/FWK CPU.

Return value
0 Success
EINVAL uti_attr is invalid

UTI_ATTR_FABRIC_INTR_AFFINITY Macro

27

Synopsis
int UTI_ATTR_FABRIC_INTR_AFFINITY(uti_attr_t *uti_attr)

Description
Set fabric_intr_affinity attribute of uti_attr to true and make the attribute valid. This macro is
used to indicate that the utility thread should be placed on a CPU to which fabric-
(interconnect)-related IRQ is routed.

Return value
0 Success
EINVAL uti_attr is invalid

Utility Thread Behavior Attributes Macros

28

Synopsis
int UTI_ATTR_EXCLUSIVE_CPU(uti_attr_t *uti_attr)
int UTI_ATTR_CPU_INTENSIVE(uti_attr_t *uti_attr)
int UTI_ATTR_HIGH_PRIORITY(uti_attr_t *uti_attr)
int UTI_ATTR_NON_COOPERATIVE(uti_attr_t *uti_attr)

Description
Set the corresponding attribute of uti_attr to true and make the attribute valid. This macro is
used to describe the behavior of the utility thread. See page 10 for details.

Return value
0 Success
EINVAL uti_attr is invalid

uti_pthread_create Function

29

Synopsis
int uti_pthread_create(

pthread_t *thread, const pthread_attr_t * attr, void *(*start_routine) (void *), void * arg,
uti_attr_t *uti_attr)

Description
Create a pthread-compatible non-computation thread and denote the utility thread attributes specified by uti_attr.
When pthread_setaffinity_np() is used with the location attributes, OS tries to find a CPU which is a member of both
the CPU set specified by the attributes and the set specified by pthread_setaffinity_np().

Return value
0 on success; an error number on error.

Errors
EAGAIN Insufficient resources to create another thread, or a system-imposed limit on the number of threads

was encountered.
EINVAL Invalid settings in attr. This includes the case when pthread_setaffinity_np() is used with the location

attributes and OS failed to find a CPU which is a member of both the CPU set specified by the attributes
and the set specified by pthread_setaffinity_np().

EPERM No permission to set the scheduling policy and parameters specified in attr.

Macros for checking whether or not attributes are honored

30

Synopsis
int UTI_RESULT(uti_attr_t *uti_attr)
int UTI_RESULT_NUMA_SET(uti_attr_t *uti_attr)
int UTI_RESULT_{SAME,DIFFERENT}_NUMA_SET(uti_attr_t *uti_attr)
int UTI_RESULT_{SAME,DIFFERENT}_{L1,L2,L3}(uti_attr_t *uti_attr)
int UTI_RESULT_PREFER_{LWK,FWK}(uti_attr_t *uti_attr)
int UTI_RESULT_FABRIC_INTR_AFFINITY(uti_attr_t *uti_attr)
int UTI_RESULT_EXCLUSIVE_CPU(uti_attr_t *uti_attr)
int UTI_RESULT_CPU_INTENSIVE(uti_attr_t *uti_attr)
int UTI_RESULT_HIGH_PRIORITY(uti_attr_t *uti_attr)
int UTI_RESULT_NON_COOPERATIVE(uti_attr_t *uti_attr)

Description
The first macro returns whether or not all of the attributes passed are honored or not. Each of
the following macros returns whether or not the corresponding attribute is honored or not.
UTI_RESULT_NUMA_SET returns "honored" if the CPU location is within the set.

Return value
1 The attribute is honored
0 The attribute is not honored
EINVAL uti_attr is invalid

Usage Example

31

Async. Progress Thread of MPICH: Module Structure

32

MPICH provides its own thread creation function and uses it when creating an
asynchronous progress thread

Call graph

MPI_Init()
MPIR_Init_async_thread()

MPID_Thread_create()
MPIDU_Thread_create()

MPL_thread_create()

Async. Progress Thread of MPICH: Code

33

void MPL_thread_create(MPL_thread_func_t func, void *data, MPL_thread_id_t * idp, int *errp){
...

#if MPL_THREAD_PACKAGE_NAME == MPL_THREAD_PACKAGE_UTI
uti_attr_t uti_attr;
err = uti_attr_init(&uti_attr);
if(err) { goto uti_exit; }

/* Suggest that it's beneficial to put the thread on the same NUMA-domain as the caller */
err = UTI_ATTR_SAME_NUMA_DOMAIN(&uti_attr);
if(err) { goto uti_exit; }

/* Suggest that the thread repeatedly monitors a device */
err = UTI_ATTR_CPU_INTENSIVE(&uti_attr);
if(err) { goto uti_exit; }

err = uti_pthread_create(idp, &attr, MPLI_thread_start, thread_info, &uti_attr);
if(err) { goto uti_exit; }

err = uti_attr_destroy(&uti_attr);
if(err) { goto uti_exit; }

uti_exit:;
#else

err = pthread_create(idp, &attr, MPLI_thread_start, thread_info);
#endif

...
}

Implementation Notes

34

Reserving CPUs for utility thread

• There are two ways for a system to reserve CPUs for utility thread
• UTI library for each system should instruct in its document app/library/runtime

developer how to do it.

35

System Way for OS to reserve CPUs Instruction to user

• McKernel
• mOS
• Linux which reserves

CPUs using cgroup

OS reserves them at its boot time and set
them to UTI_CPU_SET

Basically a user doesn't need to change the
value of UTI_CPU_SET. He/she can change when
a fine-tuning is needed.

Regular Linux OS doesn't reserve them and doesn't set
a value to UIT_CPU_SET

A user need to specify the CPUs by using
UTI_CPU_SET. He/she need to set the same
value to I_MPI_PIN_PROCESSOR_EXCLUDE_LIST
when using Intel MPI library.

Switching OS-specific Utility Thread Libraries (1/3)

36

Utility thread interface

Utility thread lib for Linux Utility thread lib for McKernel Utility thread lib for mOS

Code for utility thread

MPI / OpenMP runtime MPI / OpenMP runtime MPI / OpenMP runtime

Code for utility thread Code for utility thread

Utility thread interface Utility thread interface

Linux McKernel mOS

We want the same app executable which work on two OSes (e.g. McKernel and Linux) and need to link to the OS
specific library in a user-transparent way.

Switching OS-specific Utility Thread Libraries (2/3)

37

Utility thread lib for McKernel on
/lib/usr64

MPI / OpenMP runtime

Code for utility thread

Utility thread interface

McKernel

Utility thread interface

Utility thread lib for Linux on
/lib/usr64

Code for utility thread

MPI / OpenMP runtime

Linux

Loader mcexec bind-mounts McKernel specific UTI library implementation onto the
standard library path.

Example of McKernel and Linux

Switching OS-specific Utility Thread Libraries (3/3)

38

Wrapper library

MPI / OpenMP runtime

Code for utility thread

mOS

Utility thread interface

Utility thread lib for Linux

Code for utility thread

MPI / OpenMP runtime

Linux

Job launcher yod relinks wrapper library against mOS specific UTI library

implementation.

Utility thread lib for mOS

Utility thread interface

Example of mOS and Linux

Action Items

• Provide a reference implementation for regular Linux which don't use any
partitioning techniques such as cgroup

39

Implementation and Evaluation

40

McKernel Design - Thread Management (1/3)

Approach
• Run the utility thread in Linux in the glibc context of the McKernel process

• Offload from Linux to McKernel (call it reverse-offload) system calls which manipulate the context of the McKernel
process (e.g. mmap)

• Prevent TLS of the Linux thread from getting corrupted in the signal handler which is shared with the other mcexec
threads

• Reverse-offload futex() to synchronize with threads in McKernel

Steps
1. The user process indicates that the next clone() from the McKernel side creates a utility thread

2. McKernel spawns a pthread on McKernel

3. The McKernel thread spawns the actual utility pthread on Linux

4. McKernel copies the context of the McKernel thread to the Linux thread

5. Reverse-offload brk(), m[un]map() and futex()

6. Relay a signal sent from McKernel threads targeted at the utility thread to the Linux side

7. Save/restore TLS (part of the McKernel thread context) when the mcexec signal handler is called while in the context of
the Linux thread

41

McKernel
user thread

util_indicate_clone()
(extended system call)

McKernel mcexec

Mark the thread

mcexec
utility Thread

System processing

User processing
clone()

Legend

Clone a thread

util_migrate_inter_kernel()
(extended system call)

• Save context
• Instruct offload

Create a thread

Restore the context

Flow: Spawn a pthread from McKernel to Linux

McKernel Design - Thread Management (2/3)

McKernel
utility thread

Start the work of the utility thread

mcexec
utility thread mcctrl.ko McKernel

• Perform the work of the
system call

System processing

User processing

Legend

• Issue a system call
which needs reverse-offload

ioctl()

IKC

IKC

Code inserted by
LD_PRELOAD

McKernel Design - Thread Management (3/3)
Flow: Reverse-offload system calls

Code inserted by
LD_PRELOAD

McKernel Design - Switching OS-Specific UT library
Steps
• Call the library libuti.so

• mcexec performs bind-mount <install dir>/lib/libuti.so on /usr/lib64/libuti.so

44

/usr/lib64/libuti.so

MPI / OpenMP runtime

Code for utility thread

Link

<install dir>/lib/libuti.so

bind-mount

/usr/lib64/libuti.so

Location in McKernel view

Location in system disk

mOS Design

• (To be filled in by John)

45

Preliminary Evaluation on MPI Progress Thread Awareness

• NWCHEM
• 32 nodes, 2-sockets 10 cores / socket Xeon and Mellanox Connect-IB
• MVAPICH2-2.1 (with modification on progress thread)

• Four core binding configurations:
• C20,U0 means 20 ranks without progress thread
• (C/U)20 means 20 ranks with 20 progress threads, each progress thread runs on the same core as its parent MPI rank
• C16,U4 means 16 ranks with 16 progress threads, 4 cores are dedicated to progress threads, each progress thread runs on the same NUMA

domain as its parent MPI rank

• TODO: measurements should be also done with hyperthreading on and using AMG miniApp

0

50

100

150

200

250

300

350

400

C20,U0 C16,U0 (C/U)20 C16,U4

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Core binding configuration

NWCHEM W10 CCSD CC-PVDZ energy

46

Discussion Detail

47

Discussion on Implementation Alternatives of Type 1-B (1/3)

48

Pros
• Can create the thread directly on Linux
• Allow different implementations of creation function with the

standardized interface (e.g. clone_util() in the figure)

Cons
• It is difficult to build the pthread-compatible glibc structures

Solutions
• Create a new thread using the special clone-level function

• Let the thread create a pthread-compatible one

• Return the thread ID of this new thread to the caller

pthreadize(..., entry, ...) {
pthread_create(..., entry, ..);

/* Prepare pthread compatible glibc structures */
}

uti_pthread_create(..., uti_attr_t *uti_attr) {
... /* pthread_create() code */
clone_util(..., entry, ..., uti_attr, ...);

/* Special system call with standardized interface
which creates a thread on Linux core and
jumps to pthreadize() */

... /* pthread_create() code */
}

1. Indicate via a clone-level creation function

clone() to target core and then pthread_create() (mOS)

Discussion on Implementation Alternatives of Type 1-B (2/3)
49

uti_pthread_create(..., uti_attr_t *attr) {
... /* pthread_create() code */
util_indicate_clone();

/* Special system call which notifies that next clone()
should create a utility thread */

clone();
/* Modified system call which puts the thread on

Linux core when notified */
... /* pthread_create() code */

}

uti_pthread_create(..., uti_attr_t *attr) {
pthread_attr_setaffinity_np(attr, ...); /* Unmodified */
pthread_create(..., attr, ...); /* Unmodified */

}

Bind core and pthread_create() (Linux)

Notifying the next clone() is a special one (mOS)
2. Indicate with a notify-function preceding the

create-function
Pros

• Can create the thread directly on Linux

• It is easy to create pthread-compatible glibc
structures by reusing the code of pthread_create()

Cons
• Might need to modify the thread creation function

so that it understands the notification

Discussion on Implementation Alternatives of Type 1-B (3/3)

50

3. Create a thread on LWK and then migrate
Pros

• It is easy to create pthread-compatible glibc
structures by reusing the code of
pthread_create()

Cons
• Cannot create the thread directly on Linux, so incurs

additional overhead and disturbs CPU binding of
compute-threads

Solutions
• Treat the sleeping thread differently when trying to

find vacant cores for compute-threads

uti_pthread_create(..., uti_attr_t *attr) {
... /* pthread_create() code */
clone_sleep(...);

/* Special system call which creates a sleeping thread on
McKernel core */

migrate_inter_kernel(..., attr, ...);
/* Special system call which migrates it to Linux core */

... /* pthread_create() code */
}

clone() in sleep state and then migrate (McKernel)

uti_pthread_create(..., uti_attr_t *attr) {
pthread_create(...); /* Unmodified */
migrate_cgroup(..., tid, ...);

/* Function provided by resource manager which migrates
it to system service cgroup */

}

pthread_create() and migrate it with cgroup (Linux)

wrapper(..., entry) {
util_indicate(...);

/* Special library function which migrates it to Linux core */
(*entry)(...)

}
uti_pthread_create(..., uti_attr_t *attr) {

pthread_create(&pthread, ..., wrapper, ...); /* Unmodified */
}

pthread_create() and then indicate (mOS)

Discussion on Attributes

51

Name Description

1 cpu_set

(1)-(2) are useful when you already resolved processor topology. (1)-(2) and (3)-(7) are usually used exclusively. It
specifies a set of CPUs instead of a CPU to follow the Linux way (i.e. sched_set_affinity()) though a user often
would specify only one CPU. cpu_set cannot be used when CPUs are numbered in a different way than Linux in
the kernel of the caller. It can't be used when the Linux cores are not visible to the kernel.

2 numa_domain_set -
3 same_numa_domain (4)-(7) are useful when you don't want to resolve processor topology.
4 different_numa_domain -
5 same_{L1,L2,L3} -
6 different_{L1,L2,L3} -

Future Work

52

Support of Post-creation Self-indication

• Adding 3-B (i.e. the caller indicates it is a utility thread, see page 7)

Discussion
1. Supporting both of 1-B and 3-B makes the API more complicated and makes the usage

less uniform because they are quite different
2. Implementing 3-B is difficult
3. No use-case of 3-B is found so far

→ Won't pursue it unless the runtime community really starts pushing for it

Upstream a New clone()-level Function to Linux Community

Possible Plan
• Propose extensions to clone() to the Linux community

• With showing the benefit
• Propose extensions to pthread_create() to the pthread community

• Extensions to pthread_attr
• A new pthread_create() which can understand the attribute and use the new clone()
• With showing an example implementation of the pthread_create()

Letting developers know the decision on location

55

UTI_ATTR_GET_CPU_SET Macro
Synopsis

int UTI_ATTR_GET_CPU_SET(uti_attr_t *uti_attr, size_t cpusetsize, cpu_set_t *cpuset)

Description
Get the cpu location chosen by OS to cpuset. cpusetsize denotes the size of cpuset.

Return value
0 Success
EINVAL uti_attr is invalid
ENODATA The attribute is not set

• Runtime developers might want to know the decision done by OS

• We can add macros to obtain the decision (an example for CPU set is shown below).
However, the utility thread can find it with system calls (e.g. getcpu())

→ Won't pursue it unless the runtime community really starts pushing for it

Considered but Rejected Ideas

56

Purpose
• Allow users to set the reference point for {same,different}_* attributes so that they can indicate such

as:
• Place the thread in the same NUMA domain as CPU #18
• Place the thread on a core sharing L2 with CPU#18

Attribute added/modified

Setting a Reference Point for Location Attributes (1/4)

57

Name Type Description

base_{cpu,numa,node}
Integer Specify the base CPU/NUMA domain for{same,different}_*. The CPU/NUMA domain of the

caller is used as the base when this attribute is not valid.
same_numa_domain bool Request to place the thread in the base NUMA domain.
different_numa_domain bool Request to place the thread in a the different NUMA domain than the base NUMA domain.
same_{L1,L2,L3} bool Request to place the thread on the CPU sharing L1/L2/L3 cache with the base CPU.
different_{L1,L2,L3} bool Request to place the thread on the CPU not sharing L1/L2/L3 cache with the base CPU.

Setting a Reference Point for Location Attributes (2/4)

58

Macros added

UTI_ATTR_BASE_{CPU,NUMA,Node} macro

Synopsis
int UTI_ATTR_BASE_CPU(uti_attr_t *uti_attr, int cpu)
int UTI_ATTR_BASE_NUMA(uti_attr_t *uti_attr, int cpu)
int UTI_ATTR_BASE_Node(uti_attr_t *uti_attr, int cpu)

Description
Set the base attribute of uti_attr and make the attribute valid. This is the base CPU, NUMA
domain, or node that is used as a reference for the UTI_ATTR_SAME_x and
UTI_ATTR_DIFFERENT_x macros.

Return value
0 Success
EINVAL uti_attr is invalid

Setting a Reference Point for Location Attributes (3/4)

59

UTI_ATTR_SAME_NUMA_DOMAIN macro

Synopsis
int UTI_ATTR_SAME_NUMA_DOMAIN(uti_attr_t *uti_attr, bool same)

Description
Set same_numa_domain attribute of uti_attr to same and make the attribute valid.
This macro is used to indicate which NUMA domain the utility thread should run in. If a base
domain or base CPU has been set, then that is used as the reference point. Otherwise the same
NUMA domain that the caller is in, is chosen.

Return value
0 Success
EINVAL uti_attr is invalid

Macros changed: UTI_ATTR_{SAME,DIFFERENT}_*
• Showing the case for UTI_ATTR_SAME_NUMA_DOMAIN and the similar changes are applied to

others

Discussion
• Make the API complex and inconsistent

• The intention of {same,different}_* attribute was to allow users to specify location in an abstracted way
(complementing {cpu,numa_domain)_set which require exact locations) but base_* require user to
specify exact locations

• It is difficult for users to specify exact locations
• Because the resources given to Linux/LWK might change site-by-site, OS-by-OS, job-by-job
• It's even impossible when the resources are invisible to the caller

• It is difficult for users to predict the behavior because the attributes might be ignored
• Make the implementation complex

• It needs to calculate the union of the reference CPU-set and NUMA-domain-set and then narrow down
the candidates using behavior when both are specified

→ Won't include this idea for now

Setting a Reference Point for Location Attributes (4/4)

UTI_ATTR_CPU_SET Macro

61

Synopsis
int UTI_ATTR_CPU_SET(uti_attr_t *uti_attr, size_t cpusetsize, cpu_set_t cpuset)

Description
Set cpu_set attribute of uti_attr to the set specified by cpusetsize and cpuset and make the

attribute valid. cpusetsize denotes the size of cpuset.

When a new utility thread is created with this attribute, it indicates to the kernel that it should

run on one of these CPUs.

Return value
0 Success

EINVAL uti_attr is invalid

→ Replaced with UTI_CPU_SET environmental variable

This macro won't work for the system where Linux CPUs are invisible to the caller (e.g. McKernel).

Acknowledgements

62

Acknowledgements

• Abdelhalim Amer (ANL, MPICH developer)

• John Attinella (Intel, mOS developer)
• Pavan Balaji (ANL, MPICH developer)

• Michael Blocksome (Intel, MPICH developer)

• George Bosilica (UTK, Open MPI developer)
• Kouichi Hirai (Fujitsu, OS developer)

• Krishna Kandalla (Cray, MPICH developer)
• Tom Musta (Intel, mOS developer)

• Lena Oden (ANL, MPICH developer)

• Takayuki Okamoto (Fujitsu, OS developer)
• Kenneth Raffenetti (ALN, MPICH developer)

63

We received valuable feedback from:

